Product Brief

ADX05640DST65

General Description

The ADX05640DST65 is a 5-bit, 640 MSPS, Continuous-Time (CT) $\Delta\Sigma$ Modulator IP core with 11-bit ENOB up to 40 MHz signal bandwidth and a 3th-order built-in antialiasing filter. It is ideally suited for applications that require simultaneously low power while maintaining good dynamic performance at high-speed.

Due to the CT implementation of the $\Delta\Sigma$ modulator, no additional sample and hold (SAH) circuit or input buffer is needed which reduces the silicon area and power consumption of the acquisition chain.

The ADX05640DST65 achieves low noise and low distortion which makes it ideal for multicarrier systems.

Others IP blocks such a voltage reference, PLL, digital decimation filter and high-speed serializer may be used with the ADX05640DST65 to build a complete digitization sub-system.

Applications

- High-speed data acquisition card
- Communication infrastructure
- Measurement equipment
- Test equipment
- Radar

STATUS
Silicon Proven

5-bit, 640Msps, $\Delta\Sigma$ Modulator

Benefit and Features

Process: 65nm CMOS LP/GP (1P7M)

Output data-rate: 640 MSPS
Analog bandwidth: 40 MHz
11-bit ENOB up to 40 MHz

• Low noise : SNR=69 dB

• Excellent linearity: THD =76.5 dBc

Low power: 87.3 mW

• 1.6 V_{pp_diff} input voltage range

· High tolerance to clock jitter

Very easy to drive

Resistive input impedance

Third-order anti-aliasing filter

-40°C to +125°C junction temperature

1.3 mm² area

Power down mode

Functional Diagram

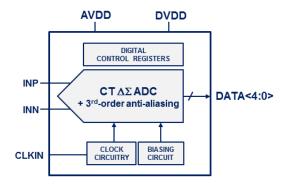


Figure 1. Functional block diagram

Deliverables

- Layout view (GDSII)
- Characterization report
- Behavioral model (Verilog-A)
- Data sheet
- Characterization report
- Integration support

ADX05640DST65

5-bit, 640Msps, $\Delta\Sigma$ Modulator

Electrical Characteristics*

(Temp=27°C, AVDD=1.2 V, DVDD=1.0 V, CLKIN=640 MHz, A_{IN}=-2.5 dBFS, V_{ICM}=0.8 V)

PARAMETER	SYMBOL	CONDITIONS	VALUE	UNITS
ANALOG INPUT				
Analog Input Common-Mode	V _{ICM}		0.8	V
Differential analog input	V_{inp} - V_{inn}		1.6	٧
AC CHARACTERISTICS				
Effective Number of Bits	ENOB	f _{in} =6 MHz	11.0	bit
Signal to Noise Ratio	SNR	f _{in} =6 MHz	71.9	dBFS
Total Harmonic Distortion	THD	f _{in} =6 MHz	76.5	dBc
Second-order harmonic distortion	HD2	f _{in} =6 MHz	80	dBc
Third-order harmonic distortion	HD3	f _{in} =6 MHz	90	dBc
Signal to Noise plus Distorsion Ratio	SNDR	f _{in} =6 MHz	71.1	dBFS
Spurious Free Dynamic Range	SFDR	f _{in} =6 MHz	80	dBc
Inter-modulation product		A _{IN1} =-8.5 dBFS, A _{IN2} =-8.5 dBFS		
Second-order	IM2	f _{in1} =10 MHz & f _{in2} =11 MHz	79	dBc
Third-order	IM3	f _{in1} =10 MHz & f _{in2} =11 MHz	79	dBc
In-band Noise Spectral Density	NSD	Over 40 MHz bandwidth	-148	dBFS/Hz
Worst case alias attenuation			40	dB
POWER SUPPLIES & POWER CONSUMPTION				
Supply voltage				
Analog	AVDD		1.2	V
Digital	DVDD		1.0	V
Total power consumption	P _{ower}	f _{in} =6 MHz	87.3	mW

^{*} from lab measurements

Customization and porting

The ADX05640DST65 was evaluated and verified on silicon by our design team. It is available as a hard macro-cell. It is scalable and portable with respect to manufacturing process and can be customized as necessary for the required application.

Our proprietary design flow and qualified approach greatly increase the probability of right-first-time design. Our main concerns are your development cost and your time-to-market.

About SCALINX

SCALINX is a fabless company designing state-of-the-art Analog and Mixed-Signal Integrated Circuits and Intellectual Property blocks for Communications and Industrial markets. Our core business is to provide tailored solutions to OEMs and semiconductor companies developing highend systems and circuits with ultra-low power requirements and reduced Bill of Material.

Our expertise is in the field of signal conditioning, data conversion systems (ADC/DAC) and digital processing.

Product Brief

ADX05640DST65

5-bit, 640Msps, $\Delta\Sigma$ Modulator

SCALINX's IC design team has a cumulated expertise of more than 100 years in the semiconductor industry with a proven track record of first-time right tape-outs that led to several successful business stories.